I think the correct answer from the choices listed above is the last option. The pressure of an enclosed gas depends on the number of molecules in a unit volume and their average kinetic energy, its chemical composition, the altitude about sea level and the number of atoms per molecule. Hope this helps. Have a nice day.
Answer:
Explanation:
what wheres the answer???
The energy at n level of hydrogen atom energy level =13.6/n^2
substiture the respective n values in the equation above and find the difference in the energy levels
instagram : imrajsingh
gimme a follow^ :)
Answer:
The rate of reaction rA is an intensive parameter.
Explanation:
The rate of reaction for a chemical species is typically -rA. Negative sign only shows that reactants are consumed when time is passing in the reaction.
Reaction rate will depend of several factors such as: Constant of equilibrium - K, Concentration of species - CA, Temperature - T and so on.
When we analyze the reaction rate the units are mol/Ls. It means that reaction rate will only depend of concentration and other variables. In this way, rate of reaction only is afected when we have changes in concentrations.
Concentration is an intensive parameter, it is not important if we have 100 kg or 100 L, or even 1 Kg or 1 L of total solution. Concentrations are the proportion of them and they will remain constant independent of the total mass or volume studied.
Due to the above, concentration and rate of reaction are intensive parameters and they do not depend of the total mass or volume studied.
Answer:
ΔH3 = 1/2 (629) - ΔH^0
Explanation:
Given data:
Bond energy of H2 = ΔH1 = 436 Kj/mol
Bond energy of Br2 = ΔH2 = 193 Kj/mol
To find:
Let bond energy of HBr = ΔH3 = ?
Equation:
H2 + Br2 → 2HBr
enthalpy of formation of HBr = ΔH1 + ΔH3 - 2(ΔH3)
ΔH^0 = 436 + 193 - 2(ΔH3)
(436 + 193) - ΔH^0 = 2(ΔH3)
ΔH3 = 1/2 (629) - ΔH^0