Answer:
2.5 moles of Al
Explanation:
We'll begin by calculating the number of mole in 127 g of Al₂O₃. This can be obtained as follow:
Mass of Al₂O₃ = 127 g
Molar mass of Al₂O₃ = 101.961 g/mol
Mole of Al₂O₃ =?
Mole = mass / molar mass
Mole of Al₂O₃ = 127 / 101.961
Mole of Al₂O₃ = 1.25 mole
Finally, we shall determine the number of mole of Al that reacted. This can be obtained as follow:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted to produce 2 moles of Al₂O₃.
Therefore, Xmol of Al will react to produce 1.25 moles of Al₂O₃ i.e
Xmol of Al = (1.25 × 4)/2
Xmol of Al = 2.5 moles.
Thus, 2.5 moles of Al is needed for the reaction.
Answer:
The object will be sank
Explanation:
In this case the object is more dense than water.
Density is the relationship between a certain amount of mass of matter and the volume that is being occupied by it.
The object occupies more volume, so it occupies more mass.
As the mass from the object is higher, the object will be sank because the weight is higher than the weight from the liquid.
If the object has a lower density than the water, it will float on it.
10g
Explanation:
Box 1, Mass of A = 10g
Box 2, Mass of B = 5g
Box 3, = 1A + 1B
Unknown:
Mass of B that would combine with mass of 20g of A
Solution:
Mass ratio of A to B:
= mass ratio
= mass ratio
The mass ratio of A to B = 2: 1
Now, number of B that will combine with 20g of A;
= mass ratio
= 
Mass of B = 10g
10g of B would combine with 20g of A
learn more:
Rate brainly.com/question/8677367
#learnwithBrainly
This it true because in the triangle of the transformation from solid, liquid, and gas
:0<span />
Answer:
no examination in 16.9g in molicube i n gas
Explanation:
sana po makatulong po sa inyo