Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
It's the actual structure of diamond which made the two different. Diamonds have a tetrahedral structure, and as for graphite, it's not structured in that way. The structures of the two is also the reason why diamond is harder than graphite.
Answer:
Explanation:
<em>0.5 i go to k12 i jus took the test</em>
Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g
Terms in this set (28) Explain how knowledge of chemistry can be a more informed citizens? Knowledge of chemistry and other sciences can help you evaluate the data presented, arrive at an informed opinion, and take appropriate action.