Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol
Answer:
K = 10
Explanation:
Using Hess's law, it is possible to obtain the equilibrium constant, K, of a reaction using K of similar reactions. For example:
<em> If A ⇄ B K = X</em>
B ⇄ A K = 1/X
2A ⇄ 2B K = X².
Thus, if A(g) ⇄ 2B(g) K = 0.010
2B(g) ⇄ A(g) K = 1 / 0.010; K = 100
B(g) ⇄ A(g) K = √100 = 10
<h3>K = 10</h3>
Answer:
A reaction is non-spontaneous at any temperature when the Gibbs free energy > 0.
Explanation:
There is a state function, that determines if a reaction is sponaneous or non spontaneous:
ΔG = Gibbs free energy
A reaction is non spontaneous when it does require energy to produce that reaction. It will be spontaneous, when the reaction does not require energy to be occured.
The formula is: ΔG = ΔH - T.ΔS
ΔH → Enthalpy → Energy gained or realeased as heat.
ΔH < 0 → <em>Exothermic reaction. Spontaneity is favored
</em>
T → Temperature
ΔS → Entropy → Degree of disorder of a system.
When the system has a considered disorder ΔS > 0, disorder increases.
When the system is more ordered, ΔS < 0, disorder decreases.
The reaction will be non spontaneous if, the enthalpy is positive (endothermic reaction) and the ΔS < 0 (disorder decreases). It will not occur if we do not give energy.
ΔG < 0 → Spontaneous reaction
ΔG > 0 → Non spontaneous reaction
ΔG = 0 → System in equilibrium
I mol of anything is 6.02 * 10^23 (in this case molecules of water)
6 mols of water = x
1/6 = 6.02 * 10^23 / x Cross multiply
x = 6 * 6.02* 10^23
x = 3.612 * 10^24 molecules in 6 mols of water