Answer:
35 kg
Explanation:
From the question,
Momentum (I) = mass (m) × velocity (v)
I = m×v................... Equation 1
Where m = mass, v = velocity
make m the subject of the equation
m = I/v.................... Equation 2
Given: I = 140 kgm/s, v = 4 m/s
Substitute these values into equation 2
m = 140/4
m = 35 kg
Hence the mass of the dart is 35 kg
Answer:
The results have not been through the rigorous process of peer review
Explanation:
When a scientist conducts a study and obtains results, those results ought to be submitted to a reputable journal where the results would go through the rigorous protocol of peer review.
During this process, the reliability of the data presented is ascertained before the results are published for other scientists to see.
If the results are hurriedly published on the internet, many researchers who come in contact with the work may be fed with inaccurate information.
The meter out circuit is the flow control circuit design that can most effectively control an overrunning load.
The meter-out circuit can be very accurate, but are not efficient. The meter-out circuit can control overrunning as well as opposing loads while the other one method must be used with opposing loads only. The choice of flown control valve method and the location of the flow control in the circuit are dependent on the type of application being controlled.
<h3>What is a Circuit ?</h3>
In electronics, a circuit is a complete circular conduit through which electricity flows. A simple circuit consists of conductors, a load, and a current source. The term "circuit" broadly refers to any continuous path via which electricity, data, or a signal might flow.
- The directional valve shifts, causing the actuator to move faster than pump flow can fill it due to an overrunning load. Oil is leaking from one side, whereas there is none on the other.
Hence, flow control circuit design that can best control an overrunning load is the opposing circuit
Learn more about Circuit here:
brainly.com/question/26064065
#SPJ4
Answer:
a) 0.25m
b) 5 m/s
Explanation:
When the spring is compressed both boxes are moving with the same velocity, so applying the principle of linear momentum conservation:

Now applying the principle of energy conservation:

We got that the maximum compression is 0.25m.
Answer:
The time taken is 
Explanation:
From the question we are told that
The length of steel the wire is 
The length of the copper wire is 
The diameter of the wire is 
The tension is 
The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

Where
is the time taken to transverse the steel wire which is mathematically represented as
![t_s = l_1 * [ \sqrt{ \frac{\rho * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%20l_1%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_s = 31 * [ \sqrt{ \frac{8920 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%2031%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B8920%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

And
is the time taken to transverse the copper wire which is mathematically represented as
![t_c = l_2 * [ \sqrt{ \frac{\rho_c * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%20l_2%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho_c%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_c = 17 * [ \sqrt{ \frac{7860 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%2017%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B7860%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

So


