La velocidad correcta de la luz en el vacío es 300.000 km/s .
La distancia = (velocidad) x (duración de tiempo)
Duración de tiempo = 494 segundos, porque cada minuto = 60 segundos
La distancia = (300.000 km/s) x (494 s)
<em>La distancia = 148.200.000 km</em>
Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
Answer:
887.1Hz
Explanation:
Given parameters:
Speed of sound wave = 330m/s
Wavelength = 0.372m
Unknown:
Frequency = ?
Solution:
To solve this problem, we use the expression below:
Speed = Frequency x wavelength
330 = Frequency x 0.372
Frequency = 887.1Hz