Answer: -105 kJ
Explanation:-
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times B.E(reactant)]-\sum [n\times B.E(product)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20B.E%28reactant%29%5D-%5Csum%20%5Bn%5Ctimes%20B.E%28product%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N_2})+(n_{H_2}\times B.E_{H_2}) ]-[(n_{NH_3}\times B.E_{NH_3})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN_2%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH_2%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%20B.E_%7BNH_3%7D%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N\equiv N})+(n_{H_2}\times B.E_{H-H}) ]-[(n_{NH_3}\times 3\times B.E_{N-H})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN%5Cequiv%20N%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH-H%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%203%5Ctimes%20B.E_%7BN-H%7D%29%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times 945)+(3\times 432)]-[(2\times 3\times 391)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20945%29%2B%283%5Ctimes%20432%29%5D-%5B%282%5Ctimes%203%5Ctimes%20391%29%5D)

Therefore, the enthalpy change for this reaction is, -105 kJ
It would be C i’m pretty sure
Because they both have to do with and chemistry science
Answer:
C. 3.40 ppm, singlet
Explanation:
Given the information from the question .we have to select the best representation for represents the predicted approximate chemical shift and coupling for hydrogen(s). In this case, there is no neighboring hydrogen .Thus there won’t be any split .the best option answer is C. 3.40 ppm, singlet . Therefore the correct answer or option is C. 3.40 ppm, singlet.
Mass number...use da textbook bra