Answer:
. ¿Qué
Explanation:
Hope you have a great day
Answer:
I will ask when they made this graphics, how they measured the gas and how this affected the climate change
<u><em>BRAINLIEST</em></u>
Answer:
Balancing Nuclear Equations
To balance a nuclear equation, the mass number and atomic numbers of all particles on either side of the arrow must be equal.
Explanation:
follows:
6
3
Li
+
2
1
H
→
4
2
He
+
?
To balance the equation above for mass, charge, and mass number, the second nucleus on the right side must have atomic number 2 and mass number 4; it is therefore also helium-4. The complete equation therefore reads:
6
3
Li
+
2
1
H
→
4
2
He
+
4
2
He
Or, more simply:
6
3
Li
+
2
1
H
→
2
4
2
He
image
Lithium-6 plus deuterium gives two helium-4s.: The visual representation of the equation we used as an example.
Compact
Answer:
The solubility of the gaseous solute decreases
Explanation:
As we know, pressure decreases with altitude. This means that, at higher altitudes, the pressure is much lower than it is at sea level.
The solubility of a gas increases with increase in pressure and decreases with decrease in pressure.
Hence, in Denver, Colorado where the elevation is about 5,280 feet above sea level, a gaseous solute is less soluble than it is at sea level due to the lower pressure at such high altitude.
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.