Answer:
The equilibrium concentration of hydrogen gas is 0.0010 M.
Explanation:
The equilibrium constant of the reaction =
}
Moles of hydrogen sulfide = 0.31 mol
Volume of the container = 4.1 L
![[concentration]=\frac{moles}{volume (L)}](https://tex.z-dn.net/?f=%5Bconcentration%5D%3D%5Cfrac%7Bmoles%7D%7Bvolume%20%28L%29%7D)
![[H_2S]=\frac{0.31 mol}{4.1 L}=0.076 M](https://tex.z-dn.net/?f=%5BH_2S%5D%3D%5Cfrac%7B0.31%20mol%7D%7B4.1%20L%7D%3D0.076%20M)

Initially
0.076 M
At equilibrium
(0.076-2x) 2x x
The expression of an equilibrium constant :
![K_c=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)

Solving for x:
x = 0.00051
The equilibrium concentration of hydrogen gas:
![[H_2]=2x=2\times 0.00051 M=0.0010 M](https://tex.z-dn.net/?f=%5BH_2%5D%3D2x%3D2%5Ctimes%200.00051%20M%3D0.0010%20M)
For 1 mole of any substance, there are 6.02214086 × 10^<span>23 particles (atoms, molecules, ions, etc. depending on the substance)
So, for 1 mole of water, there are </span>6.02214086 × 10^23 water particles, and so on
So, in 1 mole of Lithium, there are 6.02214086 × 10^23 Lithium atoms
Answer:
HClO 7.54
Explanation:
Hypochlorous acid (HClO) is a weakest acid because the pKa value of Hypochlorous acid is very high among the options given in the activity. pKa is a method which is used in order to identify the strength of an acid. The higher the value of pKa of a liquid, lower the strength of an acid while lower the value of pKa of chemical, higher the strength of an acid. In the options, HClO2 is a strong acid due to high lower pKa value.
Answer:
B
Explanation:
Noble gases are in group 18 (neon, argon, etc)
Answer:
A sample of pure NO2 is heated to 338 ∘C at which temperature it partially dissociates according to the equation 2NO2(g)⇌2NO(g)+O2(g) At equilibrium the density of the gas mixture is 0.515 g/L at 0.745 atm .
(4x^2)x
Kc= -----------
(A-2x)^2
PV=nRT
n/v = P/RT = .745/(0.0821)(334+273) = .01495
To Find the initial molarity of NO2
(mol/L)(g/mol) + (mol/L)(g/mol) + (mol/L)(g/mol)= g/L
Thus:
46(A-2x) + 2x(30) + 32x = .515 g/L
46A-92x+60x+32x = .515
46A=.515
A=.01120 M
Using the total molarity found
(A-2x)+2x+x = .01495 M
A+x=.01495
Plug in A found into the above equation:
.01120+x = .01495
x=.00375
Now Plug A and x into the original Equilibrium Constant Expression:
(4x^2)x
Kc= -----------
(A-2x)^2
Kc = 0.000014
Explanation: