1) Chemical reaction: AgNO₃ + HCl → AgCl + HNO₃.
V(AgNO₃) = 30,0 mL = 0,03 L.
c(AgNO₃) = 0,225 mol/L.
n(AgNO₃) = 0,03 L · 0,225 mol/L.
n(AgNO₃) = 0,00675 mol.
From chemical reaction: n(AgNO₃) : n(HCl) = 1 : 1.
0,00675 mol : n(HCl) = 1 : 1.
n(HCl) = 0,00675 mol.
V(HCl) = n(HCl) ÷ c(HCl).
V(HCl) = 0,00675 mol ÷ 0,130 mol/L.
V(HCl) = 0,0519 L = 51,92 ml.
2) 1) Chemical reaction: AgNO₃ + KCl → AgCl + KNO₃.
V(AgNO₃) = 30,0 mL = 0,03 L.
c(AgNO₃) = 0,225 mol/L.
n(AgNO₃) = 0,03 L · 0,225 mol/L.
n(AgNO₃) = 0,00675 mol.
From chemical reaction: n(AgNO₃) : n(KCl) = 1 : 1.
0,00675 mol : n(KCl) = 1 : 1.
n(KCl) = 0,00675 mol.
m(KCl) = n(KCl) · M(KCl).
m(KCl) = 0,00675 mol · 74,55 g/mol.
m(KCl) = 0,503 g.
n - amount of substance.
M - molar mass.
Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.
It is not directly over a flame because it depends on the substance you might not want to heat it too much.you never know what could happen
Answer:
V = 38.48 L
Explanation:
Given that,
No. of moles = 1.5 mol
Pressure, P = 700 torr
Temperature, T = 15°C = 288 K
We need to find the volume of the gas. The ideal gas equation is given by :
, R = L.Torr.K⁻¹.mol⁻¹
So, the required volume is equal to 38.48 L.
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>