Answer:
Sam will do 1152 J of work to stop the boat
Explanation:
Work: This is defined as the product of force and distance, the S.I unit of work is Joules. At any point in science, during calculation Energy and worked can be interchange because they have the same unit.
E = W = 1/2mv²................ Equation 1
Where E = energy, W = work, m = mass, v = velocity.
Given: m = 900 kg, v = 1.6 m/s
Substituting these values into equation 1
W = 1/2(900)(1.6)²
W = 450×2.56
W = 1152 J.
Therefore Sam will do 1152 J of work to stop the boat
<h3>2
Answers:</h3>
a) Velocity is a vector quantity
e) Velocity is a speed with direction
=================================================
Explanation:
If we know the velocity of an object, then we know how fast it's going (speed) and where it's going (direction). It is a vector because the direction of the vector determines the direction, and the length of the vector (aka magnitude) determines the speed. So in a sense we've built in two facts of data into one visual.
An example of velocity: 10 miles per hour north. Here we have the speed of 10 mph and the direction north.
-------------------
Extra info:
- Choice B contradicts choice A, so we can cross choice B off the list.
- Choice C is false because speed is a scalar, or single quantity, and not a vector. As mentioned earlier, speed is a part of velocity, but they aren't the same exact thing.
- Choice D is false because the velocity does not account for net force. We don't have any force information built into the velocity.
We Know, F = m.a
Here, m = 2 Kg
& a = 2 m/s²
Substitute for it,
F = 2*2 Kgm/s²
F = 4 Kgm/s²
Answer:
Done
Explanation:
The differences are significant. The main disadvantages of a pinhole camera compared to a modern camera are:
Proper exposure requires a trial and error approach.
Requires manual control of shutter speed (difficult to control)
Poor image quality (due to diffraction effects).
Long exposures (lead to blurry images if the subject moves).
Fixed aperture or f-stop.
Advantages include:
Large depth of field.
Inexpensive
Robust and nearly 100% reliable.
If used properly can create artistic effects.
Answer:
1.67m
5m/s
Explanation:
Given parameters:
Wavelength of the wave = 3m
Speed of the wave = 5m/s
Unknown:
Frequency of the wave = ?
Speed of the water waves = ?
Solution:
The distance between crest and the adjacent trough of water waves is known as the wavelength of a wave.
To find the frequency ;
V = f∧
V is the speed of the wave
f is the frequency
∧ is the wavelength
Insert the parameters and find the frequency;
f = V/ ∧ = 5 / 3 = 1.67Hz
The rate at which the wave passed a given point is the speed of the wave and it is 5m/s