Answer:
T = 19.75 N
Explanation:
given,
mass of ball = 0.25 Kg
radius = 0.5 m
frequency = 2 s⁻¹
tension in the string = ?
angular velocity
ω = 2 π f
ω = 2 π x 2
ω = 12.57 rad/s
tension on the string is equal to the centripetal force
T = m ω² r
T = 0.25 x 12.57² x 0.5
T = 19.75 N
Tension in the string is equal to T = 19.75 N
C volume because the volume take up the Mater and space around it thing
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.
Static equilibrium means that all forces are equal, so make this easiest you want to break F1 into it's horizontal and vertical components. As there are no other forces acting in the horizontal, we know the horizontal component of F1 is 40N. This allows the vertical component to be found using pythagorus theorem. After finding the vertical and horizontal components, you just have to add the vertical components to find the difference between the up and down.