Correct Question: what is the oxidizing agent in the reaction.
2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Answer: MnO4-is the oxidizing agent
Explanation:
In the reaction 2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Oxidizing agent oxidizes other molecules while the themselves get reduced.
oxidizing agents give away Oxygen to other compounds.
MnO4-is the oxidizing agent because
On the reactants side
Oxidation number of Mn in 2MnO4- is +7
Oxidation number of Cl- is -1
On the products side
Oxidation number of Mn is +2
While oxidation number of Cl is zero
Therefore the oxidizing agent is 2MnO4 because is oxidizes Chlorine from -1 to 0 while itself got reduced from oxidation state of +7 to +2
The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = 
h = Planck's constant = 
c = speed of light = 
= wavelength of light = ?
Putting in the values:


Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm
PbH4 will be formed as a result of a polar covalent bond between the H and the Pb.
Since H is more electronegative than the Pb, it is, thus, expected that the H would be able to pull the electron charge towards itself. This will result in the H being negative.
Based on this:
PbH4 would be expected to <span>have polar covalent bonds with a partial negative charges on the H atoms. </span>