1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
2 years ago
9

A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent

travelling waves CANNOT be:
Physics
1 answer:
azamat2 years ago
5 0

The wavelengths of the constituent travelling waves CANNOT be 400 cm.

The given parameters:

  • <em>Length of the string, L = 100 cm</em>

<em />

The wavelengths of the constituent travelling waves is calculated as follows;

L = \frac{n \lambda}{2} \\\\n\lambda = 2L\\\\\lambda = \frac{2L}{n}

for first mode: n = 1

\lambda = \frac{2\times 100 \ cm}{1} \\\\\lambda = 200 \ cm

for second mode: n = 2

\lambda = \frac{2L}{2} = L = 100 \ cm

For the third mode: n = 3

\lambda = \frac{2L}{3} \\\\\lambda = \frac{2 \times 100}{3} = 67 \ cm

For fourth mode: n = 4

\lambda = \frac{2L}{4} \\\\\lambda = \frac{2 \times 100}{4} = 50  \ cm

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.

The complete question is below:

A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:

A. 400 cm

B. 200 cm

C. 100 cm

D. 67 cm

E. 50 cm

Learn more about wavelengths of travelling waves here: brainly.com/question/19249186

You might be interested in
Question #4 Multiple Choice Which of the following is a similarity between an industrial metrologist and a legal metrologist? Bo
sdas [7]

Answer:

choice B

Explanation:i took the test

6 0
2 years ago
Read 2 more answers
In the sport of parasailing, a person is attached to a rope being pulled by a boat while hanging from a parachute-like sail. A r
IrinaK [193]

Answer:

570 N

Explanation:

Draw a free body diagram on the rider.  There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.

The rider is moving at constant speed, so acceleration is 0.

Sum of the forces in the x direction:

∑F = ma

F cos 30° - T cos 15° = 0

F = T cos 15° / cos 30°

Sum of the forces in the y direction:

∑F = ma

F sin 30° - W - T sin 15° = 0

W = F sin 30° - T sin 15°

Substituting:

W = (T cos 15° / cos 30°) sin 30° - T sin 15°

W = T cos 15° tan 30° - T sin 15°

W = T (cos 15° tan 30° - sin 15°)

Given T = 1900 N:

W = 1900 (cos 15° tan 30° - sin 15°)

W = 570 N

The rider weighs 570 N (which is about the same as 130 lb).

6 0
3 years ago
A 6 kg box with initial speed 5 m/s slides across the floor and comes to a stop after 1.9 s. What is the coefficient of kinetic
Ilia_Sergeevich [38]

Answer:

\mu_k=0.27

Explanation:

According to the free body diagram, in this case, we have:

\sum F_x:-F_k=ma\\\sum F_y:N=mg

Recall that the force of friction is given by:

F_k=\mu_k N

Replacing and solving for the coefficient of kinetic friction:

-\mu_kN=ma\\-\mu_k(mg)=ma\\\mu_k=-\frac{a}{g}

We have an uniformly accelerated motion. Thus, the acceleration is defined as:

a=\frac{v_f-v_0}{t}\\a=\frac{0-5\frac{m}{s}}{1.9s}\\a=-2.63\frac{m}{s^2}

Finally, we calculate \mu_k:

\mu_k=-\frac{-2.63\frac{m}{s^2}}{9.8\frac{m}{s^2}}\\\mu_k=0.27

4 0
3 years ago
An ore sample weighs 17.50 N in air. When the sample
zysi [14]

Answer with Explanation:

We are given that

Weight of an ore sample=17.5 N

Tension in the cord=11.2 N

We have to find the total volume and the density of the sample.

We know that

Tension, T=W-F_b

F_b=buoyancy force

T=Tension force

W=Weight

By using the formula

11.2=17.5-F_b

F_b=17.5-11.2=6.3 N

F_b=V_{object}\times \rho_{water}\cdot g

Where

V_{object}=Volume of object

\rho_{water}=1000 kgm^{-3}=Density of water

g=9.8 ms^{-2}=Acceleration due to gravity

Substitute the values then we get

6.3=9.8\times 1000\times V_{object}

V_{object}=\frac{6.3}{9.8\times 1000}=6.43\times 10^{-4} m^3

Volume of sample=6.43\times 10^{-4} m^3

Density of sample,\rho_{object}=\frac{Mass}{volume_{object}}

Where mass of ore sample=1.79 kg

Substitute the values then, we get

\rho_{object}=\frac{1.79}{6.43\times 10^{-4}}=2.78\times 10^3 kg/m^3

Density of the sample=2.78\times 10^{3} kgm^{-3}

7 0
3 years ago
Two parallel metal plates are at a distance of 8.00 m apart.The electric field between the plates is uniform directed towards th
yuradex [85]

Answer:

C

Explanation:

Formula E=F/C also E=V/d

In this case use the second formula; E=V/d

Data given; E=4N/C d=8m

So v=E X d

     V=4x8=32V

k.e=eV= 2X32=64eV

3 0
3 years ago
Other questions:
  • When the temperature of water increases from room temperature to 90C the process of heating the water is...
    9·2 answers
  • An automobile spare tire is inflated to a certain pressure. When the tire is placed on a car, the weight of the car causes the p
    12·2 answers
  • Which of the following describes the difference between a Solar and a Lunar eclipse?
    14·2 answers
  • What do we call the distance labeled from A to B and what could we do to the note played on an instrument to change that distanc
    14·2 answers
  • A system absorbed 44 joules of heat from its surroundings. After doing work, the increase in the internal energy of the system i
    12·2 answers
  • What personal experiences have you had with watching a substance change from one phase to another?
    5·1 answer
  • Thunderstorms are often produced ahead of this type of front
    7·1 answer
  • What would a bullet fired from a very long distance, such as 1000 yards from the target do as it travelled along a straight path
    6·1 answer
  • (d) What type of transformation is done by the following things?
    7·1 answer
  • Can anyone follow me​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!