Anything greater than total vacuum is technically a form of pressure
Answer:
- the capacity of the pump reduces by 35%.
- the head gets reduced by 57%.
the power consumption by the pump is reduced by 72%
Explanation:
the pump capacity is related to the speed as speed is reduces by 35%
so new speed is (100 - 35) = 65% of orginal speed
speed Q ∝ N ⇒ Q1/Q2 = N1/N2
Q2 = (N2/N1)Q1
Q2 = (65/100)Q1
which means that the capacity of the pump is also reduces by 35%.
the head in a pump is related by
H ∝ N² ⇒ H1/H2 = N1²/N2²
H2 = (N2N1)²H1
H2 = (65/100)²H1 = 0.4225H1
so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.
Now The power requirement of a pump is related as
P ∝ N³ ⇒ P1/P2 = N1³/N2³
P2 = (N2/N1)³P1
H2 = (65/100)²P1 = 0.274P1
So the reduction in power is 1 - 0.274 = 0.725 which is 72%
Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.
Answer
For isotropic material plastic yielding depends upon magnitude of the principle stress not on the direction.
Tresca and Von Mises yield criteria are the yield model which is widely used.
The Tresca yield criterion stated that yielding will occur in a material only when the greatest maximum shear stress reaches a critical value.
max{|σ₁ - σ₂|,|σ₂ - σ₃|,|σ₃ - σ₁|} = σ_f
under plane stress condition
|σ₁ - σ₂| = σ_f
The Von mises yielding criteria stated that the yielding will occur when elastic energy of distortion reaches critical value.
σ₁² - σ₁ σ₂ + σ₂² = σ²_f
Answer:
Explanation:
The 7 Habits of Highly Effective People, is a book written and first published in 1989. It is a business and self-help book that was written by Stephen Covey. The seven habits include
Being proactive
Starting anything with the end in mind
First things first
Always thinking towards a win-win situation
Seeking initially to understand, then going on to want to be understood
Synergize, and lastly
Growing
Answer:
material remove in 3 min is 16790.4 mm³/s
Explanation:
given data
length L = 80 cm = 800 mm
width W = 30 cm
height H = 15 cm
make grove length = 80 cm
width = 8 cm
depth = 10 cm
mill toll diameter = 4 mm
axial cutting depth = 20 mm
to find out
How much material removed in 3 minutes
solution
first we find time taken for length of advance that is
time = 
here advance is given as 0.001166 mts / sec
so time = 
time = 686.106 seconds
now we find material remove rate that is
remove rate = mill toll rate × axial cutting depth × advance
remove rate = 4 × 20×0.001166 ×1000
remove rate = 93.28 mm³/s
so
material remove in 3 minute = 3 × 60 = 180 sec
so material remove in 3 min = 180 × 93.28
material remove in 3 min is 16790.4 mm³/s