The ideal mechanical advantage of a lever (IMA) is given by:

Where:
Le = Effort of the arm
Lr = Resistance arm.
Therefore, we can increase the force adventage by increasing the effort arm or reducing the load arm
Answer:
a. Make the effort length longer.
Answer: "converted"
Energy can be converted from one form to another
Explanation:
The law of conservation of energy states that energy can neither be created nor destroyed but converted from one form to another.
For instance:
- an electric generator convert mechanical energy to electrical energy
- a solar panel system convert solar energy to electrical energy.
- an electric pressing iron convert electrical energy to heat energy
Thus, energy can be converted from one form to another
D) a car speeding up may i have brainliest hope this help
Answer:four times
Explanation:
Given
mass of both cars A and B are same suppose m
but velocity of car B is same as of car A
Suppose velocity of car A is u
Velocity of car B is 2 u
A constant force is applied on both the cars such that they come to rest by travelling certain distance
using to find the distance traveled
where, v=final velocity
u=initial velocity
a=acceleration(offered by force)
s=displacement
final velocity is zero
For car A


For car B


divide 1 and 2 we get

thus 
distance traveled by car B is four time of car A
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.