Answer: height of building = 18.8m
Explanation: The question is a projectile motion, a two dimensional motion with a vertical constant acceleration (g = - 9.8m/s²) and a constant horizontal velocity (thus making horizontal component of acceleration zero).
From the question, distance between bottom of building and where the object lands = 64m, initial velocity for throwing the object = 19.6m/s
The horizontal range formulae is given as
d= vt
Where d= horizontal range = 64m, v = initial velocity of throw.
64 = 19.6 × t
t = 64/ 19.6
t = 3.265 s.
Height (h) of the building is gotten by using the formulae
h =vt - 1/2gt²
h = (19.6×3.265) - 1/2×9.8×(3.265)²
h = 71.05 - (104.47/2)
h = 71.05 - 52.235
h = 18.8m
The maximum velocities in the two cases related are Vmax,2 = 2 Vmax,1
Simple harmonic motion :
In physics, simple harmonic motion is the repeated back-and-forth motion through an equilibrium, or center, position so that the maximum displacement on one side of this position is equal to the maximum displacement on the other. Each whole vibration occurs at the same time interval.
Complete question:
In the two cases shown the mass and the spring are identical but the amplitude of the simple harmonic motion is twice as big in Case 2 as in Case 1.
1)How are the maximum velocities in the two cases related?
Vmax,2 = Vmax,1
Vmax,2 = 2 Vmax,1
Vmax,2 = 4 Vmax,1
To learn more about simple harmonic motion visit: brainly.com/question/28208332
#SPJ4
Answer:
The total work on the ball is 36.25 Joules
Explanation:
There is an important principle on classical mechanics that is the work-energy principle it states that the total work on an object is equal the change on its kinetic energy, mathematically expressed as:
(1)
With W net the total work, Kf the final kinetic energy and Ki the initial kinetic energy. We're going to use this principle to calculate the total work on the baseball by the force exerted by the bat.
Kinetic energy is the energy related with the movement of an object and every classical object with velocity has some kinetic energy, it is defined as:

With m the mass of the object and v its velocity, knowing this we can use on:
In our case vf is the velocity just after the hit and vi the velocity just before the hit. For an average baseball its mass is 145g that is 0.145 kg, then

Answer:
False.
Explanation:
Lets assume our positive direction to the right (this reasoning works for any direction). A negative velocity would then be then directed to the left. If it varies as such that it aproaches to zero, it means that the variation is directed to the right, and that is where the direction of the acceleration must be pointing. In other words, its losing its velocity, so the acceleration must point opposite to the velocity. Then it means the acceleration is positive.