Answer:
Ionic bonds
Explanation:
It rymes. haha i dont even know how to spell it! ;)
Answer:
The value of the equilibrium constant for reaction asked is
.
Explanation:


![K_{goal}=\frac{[C][O_2]}{[CO_2]}](https://tex.z-dn.net/?f=K_%7Bgoal%7D%3D%5Cfrac%7B%5BC%5D%5BO_2%5D%7D%7B%5BCO_2%5D%7D)
..[1]
![K_1=\frac{[CH_3COOH][O_2]^2}{[CO_2]^2[H_2O]^2}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCH_3COOH%5D%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%5BH_2O%5D%5E2%7D)
..[2]
![K_2=\frac{[H_2O]^2}{[H_2]^2[O_2]}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2%5D%5E2%5BO_2%5D%7D)
..[3]
![K_3=\frac{[C]^2[H_2]^2[O_2]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_3%3D%5Cfrac%7B%5BC%5D%5E2%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BCH_3COOH%5D%7D)
[1] + [2] + [3]

( on adding the equilibrium constant will get multiplied with each other)



![K=\frac{[C]^2[O_2]^2}{[CO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC%5D%5E2%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%7D)
On comparing the K and
:


The value of the equilibrium constant for reaction asked is
.
Mg(OH)₂ ⇄ Mg²⁺ + 2 OH⁻
Ksp = [Mg²⁺] [OH⁻]²
6.0 x 10⁻¹⁰ = 0.10 x [OH⁻]²
[OH⁻] = 7.746 x 10⁻⁵ M
when Mg(OH)₂ 1st precipitates, [OH⁻] = 7.746 * 10⁻⁵ M
Fe(OH)₂ <—> Fe²⁺ + 2OH⁻
Ksp = [Fe²⁺] [OH⁻]²
7.9 x 10⁻¹⁶ = [Fe²⁺] x (7.746 x 10⁻⁵)²
[Fe²⁺] = 1.32 x 10⁻⁷ M
Answer: 1.32 x 10⁻⁷ M
Answer: Option (B) is the correct answer.
Explanation:
Surface tension is defined as the attractive forces experienced by the surface molecules of a liquid by the molecules present beneath the surface layer of the liquid.
And, viscosity is defined as the ability of a liquid to resist its flow. When a substance has high viscosity then it is known as a viscous substance.
Since, it is given that viscosity of liquid B is more than liquid A. Therefore, liquid B has more resistive force on its surface as compared to liquid A. As a result, time taken by liquid B is more than time taken by liquid A.
Also, Surface tension = 
Surface tension of liquid B is more than liquid A. Therefore,
.
Thus, we can conclude that tA will be less than tB.