Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
<span>Lyle stirs 5.0 grams of salt into a beaker of water. He then adds 15.0 grams of pure iodine to the mixture. If the total mass of the new mixture is 225 grams, what is the mass of the water
</span>
Answer:
D
Explanation:
A and B are completely wrong and C is partial but D is the best option
Answer:
22g
Explanation:
Given parameters:
Mass of element A = 18g
Mass of element B = 4g
Unknown:
Mass of compound formed = ?
Solution:
The reaction equation is given as;
A + B → AB
According to the law of conservation of mass "in a chemical reaction, matter is neither created nor destroyed but changed from one form to another".
Simply mas is conserved and the mass of the reactants is the same as the mass of the product that forms.
Mass of reactants = mass of A + mass of B = 18g + 4g = 22g
So;
Mass of product AB = 22g