Answer:
(1) V = 0.2 J (2) 0.05J
Explanation:
Solution
Given that:
K = 160 N/m
x = 0.05 m
Now,
(1) we solve for the initial potential energy stored
Thus,
V = 1/2 kx² = 0.5 * 160 * (0.05)²
Therefore V = 0.2 J
(2)Now, we solve for how much of the internal energy is produced as the toy springs up to its maximum height.
By using the energy conversion, we have the following
ΔV = mgh
=(0.1/9.8) * 9.8 * 1.5 = 0.15J
The internal energy = 0.2 -0.15
=0.05J
The velocity increased from 4 m/s to 22 m/s in 3 seconds. 18 m/s in 3 seconds so the average acceleration is change in velocity divided by time. 18 m/s divided by 3 seconds = 6 m/s^2
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
Answer: c. the molecules with the highest energy evaporate first, lowering the temperature of the sample
Explanation:
The process by which liquid starts to change into vapor phase at any temperature is known as evaporation.
During evaporation , the molecules which possess higher energies escape from the upper layer into vapor phase. the molecules which escape draw energy from surroundings and thus decrease the energy of the surroundings and hence lead to decrease in temperature.
As temperature of the system is directly proportional to the energy of the system , thus decrease in energy leads to decrease in temperature.

K.E. = Kinetic energy
T = temperature
R= gas constant
Answer:
KE = 4 mv2 m = 2xKE valami. V m.
Explanation: