D. a membrane bound nucleus , lmk if im right
Depends on how far away the event is and what the temperature is as this affects the speed of sound.
For example, let's say you're 600 meters away and the temperature has no affect.
The speed of sound would be roughly 340 m/s so the time it would take to hear the sound would be 600/340 = 1.76 seconds
The speed of light (c) is 3.0 X 10^8 m/s so the time it would take to see the event would be 600/3 X 10^8 = 2 X 10^-7
Subtract: 1.76 - (2 X 10^-7) = approx. 1.76
The object will sail away in a straight line ... continuing in the same direction it was going when the centripetal force stopped.
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.
Hello!
Recall the equation for gravitational force:

Fg = Force of gravity (N)
G = Gravitational constant
m1, m2 = masses of objects (kg)
r = distance between the objects' center of masses (m)
There is a DIRECT relationship between mass and gravitational force.
We are given:

If we were to double one mass and triple another, according to the equation:

Thus:
