Answer:
33 N
Explanation:
v = Velocity of fluid = 8+2 = 10 m/s
= Density of fluid = 1.2 kg/m³
C = Coefficient of drag = 1.1
A = Cross sectional area = 0.5 m²
Drag force is given by

The drag force on the athlete is 33 N
Answer:
The distance the bungee cord that would be stretched 0.602 m, should be selected when pulled by a force of 380 N.
Explanation:
As from the given data
the length of the rope is given as l=30 m
the stretched length is given as l'=41m
the stretched length required is give as y=l'-l=41-30=11m
the mass is m=95 kg
the force is F=380 N
the gravitational acceleration is g=9.8 m/s2
The equation of k is given by equating the energy at the equilibrium point which is given as

Here
m=95 kg, g=9.8 m/s2, h=41 m, y=11 m so

Now the force is
or

So here F=380 N, k=630.92 N/m

So the distance is 0.602 m
This is True
Kinetic energy is the energy of motion. The bicyclist is in motion as he pedals up the tall hill. Therefore, the bicyclist contains kinetic energy.
I think it would be WEIGHT and ROUGHNESS OF SURFACE.
Here the block has two work done on it
1. Work done by gravity
2. Work done by friction force
So here it start from height "h" and then again raise to height hA after compressing the spring
So work done by the gravity is given as

Now work done by the friction force is to be calculated by finding total path length because friction force is a non conservative force and its work depends on total path


Total work done on it

So answer will be
None of these