Answer:
The moment of inertia of the system is ![I = 400.5 \ kg \cdot m^2](https://tex.z-dn.net/?f=I%20%3D%20400.5%20%5C%20kg%20%5Ccdot%20m%5E2)
Explanation:
From the question we are told that
The mass of the platform is ![m = 133\ kg](https://tex.z-dn.net/?f=m%20%3D%20%20133%5C%20kg)
The radius of the platform is r = 1.95 m
The mass of the person is ![m_p = 62.7 \ kg](https://tex.z-dn.net/?f=m_p%20%20%3D%20%2062.7%20%5C%20kg)
The position of the person from the center is ![d = 1.19 \ m](https://tex.z-dn.net/?f=d%20%3D%20%201.19%20%5C%20m)
The mass of the dog is ![m_D = 28.5 \ kg](https://tex.z-dn.net/?f=m_D%20%20%3D%20%2028.5%20%5C%20kg)
The position of the dog from the center is ![D = 1.45 \ m](https://tex.z-dn.net/?f=D%20%3D%201.45%20%5C%20m)
Generally the moment of inertia of the platform with respect to its axis is mathematically represented as
The moment of inertia of the person with respect to the axis is mathematically represented as
![I_z = m_p* d^2](https://tex.z-dn.net/?f=I_z%20%20%3D%20%20m_p%2A%20d%5E2)
The moment of inertia of the dog with respect to the axis is mathematically represented as
![I_D = m_d * D^2](https://tex.z-dn.net/?f=I_D%20%3D%20%20m_d%20%2A%20%20D%5E2)
So the moment of inertia of the system about the axis is mathematically evaluated as
![I = I_p + I_z + I_D](https://tex.z-dn.net/?f=I%20%20%3D%20I_p%20%2B%20I_z%20%2B%20I_D)
=> ![I = \frac{mr^2}{2} + m_p * d^2 + m_d * D^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7Bmr%5E2%7D%7B2%7D%20%20%2B%20%20m_p%20%2A%20d%5E2%20%2B%20%20m_d%20%2A%20D%5E2)
substituting values
![I = \frac{(133) * (1.95)^2}{2} + (62.7) * (1.19)^2 + (28.5) * (1.45)^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B%28133%29%20%2A%20%281.95%29%5E2%7D%7B2%7D%20%20%2B%20%20%2862.7%29%20%2A%20%281.19%29%5E2%20%2B%20%20%2828.5%29%20%2A%20%281.45%29%5E2)
![I = 400.5 \ kg \cdot m^2](https://tex.z-dn.net/?f=I%20%3D%20400.5%20%5C%20kg%20%5Ccdot%20m%5E2)