1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
12

In a game of angry birds you launch a bird with an angle of 53 degrees to horizontal. Unfortunatly, its not a good shot and the

bird flies through the air, missing all the targets, and lands on the ground. (same height from which it is launched) if its intial velocity was 10m/s, find the max height the bird can reach the horizontal displaccment total time bird is in the air
Physics
1 answer:
Alisiya [41]3 years ago
8 0

Answer:

The maximum height covered is 3.25 m.

The horizontal distance covered is 9.81 m.

The total time in the air is 1.63 seconds.

Explanation:

The launch speed, u_0= 10 m/s.

Angle of launch with the horizontal, \theta = 53 ^{\circ}

So, the vertical component of the initial velocity,

u_0\sin\theta=10 \sin 53 ^{\circ}\cdots(i).

The horizontal component of the initial velocity,

u_0\cos\theta=10 \cos 53 ^{\circ}

Let, t be the time of flight, to the horizontal distance covered

D=10 \cos (53 ^{\circ})t\cdots(ii).

Not, applying the equation of motion in the vertical direction.

s= ut +\frac 1 2 at^2

Where s is the displacement in time t, u is the initial velocity and a is the acceleration.

In this case, u =10 \sin 53 ^{\circ} (from equation (i), s=0 (as the final height is same as the launch height) and a = -9.81 m/s^2 (negative sign is due to the downward direction).

\Rightarrow 0 = 10 (\sin 53 ^{\circ})t-\frac 1 2 (9.81)t^2

\Rightarrow t= \frac {2\times 10 (\sin 53 ^{\circ})}{9.81}=1.63 seconds.

So, the total time in the air is 1.63 seconds.

From equation (i),

Total horizontal distance covered is

D=10 \cos (53 ^{\circ})\times 1.63 = 9.81 m.

Now, for the maximum height, H, applying the equation of motion as

v^2=u^2+2as

Here, v is the final velocity and v=0 (at the maximum height), and h=H.

So, 0^2=(10 \sin 53 ^{\circ})^2-2(9.81)H

\Rightarrow H = \frac {(10 \sin 53 ^{\circ})^2}{2\times 9.81}

\Rightarrow H = 3.25 m.

Hence, the maximum height covered is 3.25 m.

You might be interested in
The heart working with the blood vessels to pump blood is which body system?
LiRa [457]
I think it’s the cardiovascular system
6 0
3 years ago
Three identical resistors are connected in parallel. The equivalent resistance increases by 630 when one resistor is removed and
strojnjashka [21]

Answer:

each resistor is 540 Ω

Explanation:

Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance R_e defined by the formula:

\frac{1}{R_e}=\frac{1}{R} } +\frac{1}{R} } +\frac{1}{R} \\\frac{1}{R_e}=\frac{3}{R} \\R_e=\frac{R}{3}

Therefore, R/3 is the equivalent resistance of the initial circuit.

In the second circuit, two of the resistors are in parallel, so they are equivalent to:

\frac{1}{R'_e}=\frac{1}{R} +\frac{1}{R}\\\frac{1}{R'_e}=\frac{2}{R} \\R'_e=\frac{R}{2} \\

and when this is combined with the third resistor in series, the equivalent resistance (R''_e) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

R''_e=R'_e+R\\R''_e=\frac{R}{2} +R\\R''_e=\frac{3R}{2}

The problem states that the difference between the equivalent resistances in both circuits is given by:

R''_e=R_e+630 \,\Omega

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

\frac{3R}{2} =\frac{R}{3} +630\,\Omega\\\frac{3R}{2} -\frac{R}{3} = 630\,\Omega\\\frac{7R}{6} = 630\,\Omega\\\\R=\frac{6}{7} *630\,\Omega\\R=540\,\Omega

8 0
3 years ago
We know velocity of sound v=a₩(omega), but speed does not depend on amplitude, why?
MrRissso [65]
Hope it helps............

8 0
3 years ago
A girl and a boy are riding on a merry go round that is turning at a constant rate. The girl is near the outer edge, and the boy
galina1969 [7]

Answer:

The girl has greater tangential acceleration

Explanation:

The angular acceleration (\alpha) of the merry go round is equal to the rate of the change of the angular velocity, \omega:

\alpha = \frac{d\omega}{dt}

Since all the points of the merry go round complete 1 circle in the same time, the angular velocity of each point of the merry go round is the same, and so all the points also have the same angular acceleration.

The tangential acceleration instead is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the distance from the centre of the merry go round

Since the girl is near the outer edge and the boy is closer to the centre, the value of r for the girl is larger than for the boy, so the girl has greater tangential acceleration.

5 0
3 years ago
Two beams of coherent light travel different paths, arriving at point P. If the maximum destructive interference is to occur at
amid [387]
"The path difference between the two waves should be one-quarter of a wavelength" is the statement among the choices given in the question that describes the <span>path difference between the two waves. The correct option among all the options that are given in the question is the fifth statement or the penultimate statement.</span>
3 0
3 years ago
Other questions:
  • Sodium is a highly reactive metal and chlorodyne is a poisonous gas which compound do they for a chemically combines
    9·1 answer
  • An atom of a certain element has 36 protons, 36 electrons, and a mass number of 84. At room temperature, this element is a very
    12·1 answer
  • A locomotive with two carriages drives out of the station. The locomotive has a mass of 3.0 tonnes, and each of the two wagons h
    10·1 answer
  • You are standing 5 m from a loud machine. You move 10 m from the machine to help reduce the intensity of the sound. Calculate th
    15·1 answer
  • A tow truck pulls a 1,500-kilogram car with a net force of 4,000 newtons. What is the acceleration of the car?
    9·1 answer
  • 1. Quais motivos fazem com que o Croquet Golf seja a variação da
    10·1 answer
  • How fast can Usain Bolt run if it takes him 9.9 s to run 100m?​
    14·2 answers
  • Which term is most applicable to a discussion of angular momentum in the context of black holes?
    11·1 answer
  • What is the change in the internal energy of a system that does 600 joules of work and absorbs 800 joules of heat?
    11·2 answers
  • You can switch the polarity of the bar magnet by clicking on the button with the bar magnet and two semi-circular arrows on the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!