Plastic building blocks are good for building molecules because of some useful properties which they possess. For instance, plastic are flexible, they can be easily manipulated and can be made into any shape, size and combination. They can also be produced using different colors. Because of these features, they can be used to build and to explain how molecules behave.
Explanation:
(1). It is known that in a reaction equation, reactants are placed or written on left hand side and products are written on the right hand side.
For example, 
Hence, in a reaction equation you start with the reactants and end up with the products.
(2). The number of atoms in a reaction will remain the same because according to the law of conservation of mass, mass of reactants will be equal to the mass of products.
Therefore, number of atoms on the reactant side will be equal to the number of atoms on product side.
Answer:Number of electrons that are present in an atom is determined by the electronic configuration of that atom.
If an ion is carrying a positive charge, it means that the atom has lost electrons and if an ion is carrying a negative charge, it means that the atom has gained electrons.
For the given options:
Option A: The atomic number of hydrogen atom is 1 and the electronic configuration for ion will be:
Thus, this atom does not have any electrons.
Option B: The atomic number of bromine atom is 35 and the electronic configuration for ion will be:
Thus, this atom has 36 electrons.
Option C: The atomic number of aluminium atom is 13 and the electronic configuration for ion will be:
Explanation:
Answer: anemones cannot move very quickly, but they can sting predators. When an anemone is riding on a hermit crab's shell, the anemone protects the crab from predators.
Explanation:
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.