No, physics does not suggest an exact pace in which a chemical compound will travel. It will matter in external forces as well as the median it is travelling through.
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Sb has the largest atomic radius by 206