Answer:
For water
Flow rate= 0.79128*10^-3 Ns
For Air
Flow rate =1.2717*10^-3 Ns
Explanation:
For the flow rate of water in pipe.
Area of the pipe= πd²/4
Diameter = 30/1000
Diameter= 0.03 m
Area= 3.14*(0.03)²/4
Area= 7.065*10^-4
Flow rate = 7.065*10^-4*1.12E-3
Flow rate= 0.79128*10^-3 Ns
For the flow rate of air in pipe.
Flow rate = 7.065*10^-4*1.8E-5
Flow rate =1.2717*10^-3 Ns
Where is Eq.(28) ?? You should show it to find the result
Answer:A rectangular region ABCD is to be built inside a semicircle of radius 10 m with points A and B on the line for the diameter and points C and D on the semicircle with CD parallel to AB. The objective is to find the height h * that maximizes the area of ABCD.
Formulate the optimization problem.
Explanation:A rectangular region ABCD is to be built inside a semicircle of radius 10 m with points A and B on the line for the diameter and points C and D on the semicircle with CD parallel to AB. The objective is to find the height h * that maximizes the area of ABCD.
Formulate the optimization problem.
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N