Question
Determine the average water exit velocity
Answer:
53.05 m/s
Explanation:
Given information
Volume flow rate, 
Diameter d= 8cm= 0.08 m
Assumptions
- The flow is jet flow hence momentum-flux correction factor is unity
- Gravitational force is not considered
- The flow is steady, frictionless and incompressible
- Water is discharged to the atmosphere hence pressure is ignored
We know that Q=AV and making v the subject then
where V is the exit velocity and A is area
Area,
where d is the diameter
By substitution

To convert v to m/s from m/s, we simply divide it by 60 hence

Answer:
Final mass of Argon= 2.46 kg
Explanation:
Initial mass of Argon gas ( M1 ) = 4 kg
P1 = 450 kPa
T1 = 30°C = 303 K
P2 = 200 kPa
k ( specific heat ratio of Argon ) = 1.667
assuming a reversible adiabatic process
<u>Calculate the value of the M2 </u>
Applying ideal gas equation ( PV = mRT )
P₁V / P₂V = m₁ RT₁ / m₂ RT₂
hence : m2 = P₂T₁ / P₁T₂ * m₁
= (200 * 303 ) / (450 * 219 ) * 4
= 2.46 kg
<em>Note: Calculation for T2 is attached below</em>
Answer:
t = 25.10 sec
Explanation:
we know that Avrami equation

here Y is percentage of completion of reaction = 50%
t is duration of reaction = 146 sec
so,


taking natural log on both side
ln(0.5) = -k(306.6)

for 86 % completion




t = 25.10 sec
Answer:

Explanation:
The position of each point are the following:

Since the three objects report charges with same sign, then, net force has a repulsive nature. The net force experimented by point charge A is:





Answer:
it is one this so the key word are pfp tpf htf pfp
Explanation: