The molecules spread apart, so they take up more space. Because of this, they are less dense.
This means the density decreases as temperature increases.
<span>In a series circuit with three bulbs, </span><span> </span><span>the remaining two bulbs are not affected if one bulb burns out.</span>
If a bulb goes out in your house, do all other bulbs go out? No.
<span>Final answer: B</span>
Answer:


Explanation:
Given that.
Force acting on the particle, 
Position of the particle, 
To find,
(a) Torque on the particle about the origin.
(b) The angle between the directions of r and F
Solution,
(a) Torque acting on the particle is a scalar quantity. It is given by the cross product of force and position. It is given by :




So, the torque on the particle about the origin is (32 N-m).
(b) Magnitude of r, 
Magnitude of F, 
Using dot product formula,




Therefore, this is the required solution.
Answer:
The correct option is;
The graduate cylinder with more water has more thermal energy because it is holding more water molecules
Explanation:
Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer of heat, when the content of the system is heated
The thermal energy, Q is given by the following equation;
Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT
Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.
Answer:
Potential energy is 
Explanation:
The potential energy depends on the mass, the acceleration of gravity g and the height at which the object or person is.
Potential energy 
In this case we would need to know the exact mass of the hiker in order to calculate the potential energy.
But we know the values of g and h


So, the potential energy

m is the mass of the hiker, wich is not in the description of the problem.