In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
Chromium is a metal in nature. So when one chromium is
bonded to another chromium, there is a weak intermolecular forces which helds
them together which we call as “metallic bonding”.
Metallic bonding is the intermolecular force of attraction which
exist between valence electrons and the metal atoms. It is considered as the
sharing of various detached electrons between many positive ions, whereby the
electrons serve as a "glue" which gives the substance a definite
structure.
Answer:
the types of chemical reaction are combination, decomposition, single replacement, double replacement, combustion
Answer:
10.64
Explanation:
Let's consider the basic reaction of cyclohexamine, C₆H₁₁NH₂.
C₆H₁₁NH₂(aq) + H₂O(l) ⇄ C₆H₁₁NH₃⁺(aq) + OH⁻ pKb = 3.36
C₆H₁₁NH₃⁺ is its conjugate acid, since it donates H⁺ to form C₆H₁₁NH₂. C₆H₁₁NH₃⁺ acid reaction is as follows:
C₆H₁₁NH₃⁺(aq) + H₂O(l) ⇄ C₆H₁₁NH₂(aq) + H₃O⁺(aq) pKa
We can find the pKa of C₆H₁₁NH₃⁺ using the following expression.
pKa + pKb = 14.00
pKa = 14.00 - pKb = 14.00 - 3.36 = 10.64