1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
2 years ago
5

Some chlorine atoms have an atomic mass of 37, while others have an

Physics
2 answers:
lara [203]2 years ago
8 0

Answer: D

Explanation: :) Just took the quizz

vfiekz [6]2 years ago
8 0

Answer:

The number of neutrons is the answer

Explanation:

You might be interested in
The heat capacity of object B is twice that of object A. Initially A is at 300 K and B at 450 K. They are placed in thermal cont
ivann1987 [24]

Answer:

The final temperature of both objects is 400 K

Explanation:

The quantity of heat transferred per unit mass is given by;

Q = cΔT

where;

c is the specific heat capacity

ΔT is the change in temperature

The heat transferred by the  object A per unit mass is given by;

Q(A) = caΔT

where;

ca is the specific heat capacity of object A

The heat transferred by the  object B per unit mass is given by;

Q(B) = cbΔT

where;

cb is the specific heat capacity of object B

The heat lost by object B is equal to heat gained by object A

Q(A) = -Q(B)

But heat capacity of object B is twice that of object A

The final temperature of the two objects is given by

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b}

But heat capacity of object B is twice that of object A

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b} \\\\T_2 = \frac{C_aT_a + 2C_aT_b}{C_a + 2C_a}\\\\T_2 = \frac{c_a(T_a + 2T_b)}{3C_a} \\\\T_2 = \frac{T_a + 2T_b}{3}\\\\T_2 = \frac{300 + (2*450)}{3}\\\\T_2 = 400 \ K

Therefore, the final temperature of both objects is 400 K.

4 0
3 years ago
g A 1.5-kg mass attached to spring with a force constant of 20.0 N/m oscillates on a horizontal, frictionless track. At t = 0, t
jok3333 [9.3K]

Answer:

(a)    f = 0.58Hz

(b)    vmax = 0.364m/s

(c)    amax = 1.32m/s^2

(d)    E = 0.1J

(e)    x(t)=0.1m*cos(2π(0.58s^{-1})t)

Explanation:

(a) The frequency of the oscillation, in a spring-mass system, is calculated by using the following formula:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}            (1)

k: spring constant = 20.0N/m

m: mass = 1.5kg

you replace the values of m and k for getting f:

f=\frac{1}{2\pi}\sqrt{\frac{20.0N/m}{1.5kg}}=0.58s^{-1}=0.58Hz

The frequency of the oscillation is 0.58Hz

(b) The maximum speed is given by the following relation:

v_{max}=\omega A=2\pi f A      (2)

A: amplitude of the oscillations = 10.0cm = 0.10m

v_{max}=2\pi (0.58s^{-1})(0.10m)=0.364\frac{m}{s}

The maximum speed of the mass is 0.364 m/s.

The maximum speed occurs when the mass passes trough the equilibrium point of the oscillation.

(c) The maximum acceleration is given by the following formula:

a_{max}=\omega^2A=(2\pi f)^2 A

a_{max}=(2\pi (0.58s^{-1}))(0.10m)=1.32\frac{m}{s^2}

The maximum acceleration is 1.32 m/s^2

The maximum acceleration occurs where the elastic force is a maximum, that is, where the mass is at the maximum distance from the equilibrium point, that is, the acceleration.

(d) The total energy of the system is calculated with the maximum potential elastic energy:

E=\frac{1}{2}kA^2=\frac{1}{2}(20.0N/m)(0.10m)^2=0.1J

The total energy is 0.1J

(e) The displacement as a function of time is:

x(t)=Acos(\omega t)=Acos(2\pi ft)\\\\x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)

6 0
3 years ago
What is the kinetic energy of a 9.0 kg steelhead if its speed is 16 m/s?
Vesnalui [34]

<u>We are given:</u>

Mass of the Steelhead(m) = 9 kg

Velocity of the Steelhead(v) = 16 m/s

<u>Calculating the Kinetic Energy:</u>

KE = 1/2mv²

replacing the variables

KE = 1/2 * 9 * (16)²

KE = 1152 Joules

8 0
3 years ago
What is the device used to detect and measure current?
dybincka [34]
The Ammeter is used to detect and measure current or amperage. Also a more common tool now used is a multimeter that detects and measures voltage, current, and resistance.

Any questions please just ask. Thank you.
6 0
3 years ago
Read 2 more answers
What are 7 examples of potential energy
yaroslaw [1]

Answer:

<em>Hewo Otaku Kun Here! (UwU)</em>

Explanation:

1. A rock sitting at the edge of a cliff has potential energy. If the rock falls, the potential energy will be converted to kinetic energy.

2. Tree branches high up in a tree have potential energy because they can fall to the ground.

3. A stick of dynamite has chemical potential energy that would be released when the activation energy from the fuse comes into contact with the chemicals.

4. The food we eat has chemical potential energy because as our body digests it, it provides us with energy for basic metabolism.

5. A stretched spring in a pinball machine has elastic potential energy and can move the steel ball when released.

6. When a crane swings a wrecking ball up to a certain height, it gains more potential energy and has the ability to crash through buildings.

7. A set of double "A" batteries in a remote control car possess chemical potential energy which can supply electricity to run the car.

<em>happy to help!</em>

<em>from: Otaku Kun ^^</em>

8 0
3 years ago
Other questions:
  • A water balloon was dropped from a high window and struck its target 1.1 seconds later. If the balloon left the person's hand at
    10·2 answers
  • A constant force of 40N acting on a body initially at rest gives it an acceleration of 0.1m/s inverse 2 for 4s .calculate the wo
    13·1 answer
  • A police car parked on the side of the highway emits a 1200 Hz sound that bounces off a vehicle farther down the highway and ret
    5·2 answers
  • What is the longest bone in your body
    14·2 answers
  • Photochemical smog consists of
    10·1 answer
  • What is true of all places on earth during the equinoxes
    12·2 answers
  • The formula can be used to convert temperatures between degrees Fahrenheit () and degrees Celsius (). How many degrees are in th
    12·1 answer
  • .) WHat is the force that causes the pendulum to fall?<br>​
    7·1 answer
  • A wind turbine takes in energy from wind with the goal of converting it into electrical energy. Much of the wind energy is also
    7·1 answer
  • I am stumped - please help!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!