Answer:
A. These vibrations can travel through solids, liquids, and gases, but not through <u>empty</u><u> </u><u>space</u>.
While falling, both the sheet of paper and the paper ball experience air resistance. But the surface area of the sheet is much more than that of the spherical ball. And air resistance varies directly with surface area. Hence the sheet experiences more air resistance than the ball and it falls more slowly than the paper ball.
Hope that helps!
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
As we know by work energy theorem
total work done = change in kinetic energy
so here we can say that wok done on the box will be equal to the change in kinetic energy of the system

initial the box is at rest at position x = x1
so initial kinetic energy will be ZERO
at final position x = x2 final kinetic energy is given as

now work done is given as

so we can say

so above is the work done on the box to slide it from x1 to x2
The energy of the wave decreases gradually