Answer;
The above statement is false
Explanation;
Symmetrical distribution, commonly known as symmetric distribution or normal distribution, is typically unimodal, meaning it shows only one peak in graph form.
It is a type of distribution where the left side of the distribution mirrors the right side. By definition, a symmetric distribution is never a skewed distribution.
All normal distributions are symmetric and have bell-shaped density curves with a single peak.
Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.
<u>The two ways to find acceleration in non uniform motion are as follows:</u>
<u>Explanation:</u>
Non-uniform acceleration comprises the most common description of motion. Acceleration refers to the rate of changes of velocity per unit time. Basically, it implies that acceleration changes during motion. This variety can be communicated either as far as position (x) or time (t).
Accordingly, non-uniform acceleration motion can be carried out in 2 ways:
Calculus analysis is general and accurate, but limited to the availability of speed and acceleration expressions. It is not always possible to get the expression of motion attributes in the form "x" or "t". On the other hand, the graphic method is not accurate enough, but it can be used accurately if the graphic has the correct shapes.
The use of calculations involves differentiation and integration. Integration enables evaluation of the expression of acceleration of speed and expression of movement at a distance. Similarly, differentiation allows us to evaluate expression of speed position and expression speed to acceleration.
Answer:
Explanation:
1) TRUE; potential difference can be calculated using path integral. Since the electric field is a conservative, the potential difference can be calculated using any path.
2) TRUE; since potential due to a charge is inversely dependent on distance, at infinity the potential will be almost zero.
3) TRUE, W = q.VBA.
4) FALSE; eV is a unit for work (or) energy.
5) TRUE; since the electric force is conservative force. There will be no loss in energy, the decreased potential energy will be coverted to kinetic energy.
6) FALSE; in the direction of electric field the potential decreases.
7) FALSE; equipotential surface is perpendicular to the electric field lines.
8) FALSE; electrostatic potential is scalar quantity. It depends only on the charge and distance from it.
9) FALSE; Inside a conductor the electric field is zero but the electric potential is constant at the value that is at the surface of the conductor.
10) TRUE; as long as the field is being measured outiside the body the bodies act as point charges. So electric fields due to all types of bodies charged identically will be equal.
First of all, the formula for speed is;
Speed=distance/time
From the question, you have;
distance=7,200km
Time=9 hours
So that will be;
Speed=7200/9
When divided, you will have;
Speed=800
The unit for speed is km/hr or m/s. So that will be;
Speed=800km/hr
Hope that helped, have a nice day