Answer:
W=76.55 miles.metric tons
Explanation:
Given that
Weight on the earth = 12 tons
So weight on the moon =12/6 = 2 tons
( because at moon g will become g/6)
As we know that

Here x= 1100 miles
F 2 tons

So

We know that
Work = F. dx


![W=-2.4\times 10^6\left[\dfrac{1}{x}\right]_{1100}^{1140}](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7Bx%7D%5Cright%5D_%7B1100%7D%5E%7B1140%7D)
![W=-2.4\times 10^6\left[\dfrac{1}{1140}-\dfrac{1}{1100}\right]](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7B1140%7D-%5Cdfrac%7B1%7D%7B1100%7D%5Cright%5D)
W=76.55 miles.metric tons
To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.
The energy fluency is given by the equation

Where
The energy fluency
c = Activity of the source
r = distance
E = electric field
In the other hand we have the equation for current in materials, which is given by

Then replacing our values we have that


We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.
Now the energy fluency would be,



The uncollided flux density at the outer surface of the tank nearest the source is 
Answer:
the ratio of the smallest division of main scale to the number of divisions of the vernier scale.
Explanation:
difference between the value of one main scale division and one vernier scale division