<span>1. In any nuclear reaction, nuclei are transformed in some way.
True
2. Two fissionable substances commonly used in nuclear reactors and nuclear weapons include uranium-235 and plutonium-239.
True
3. Fission reactions can be controlled; thus, they are used to create energy and electricity. But fusion reactions are uncontrollable and require too much energy for economical use.
True
4. Fission reactions occur at such high temperatures in the Sun that the Sun appears to glow.
False
Hope this answers the question. Have a nice day.</span>
Answer:
84.4g of AgCl
Explanation:
Based on the reaction:
2AgNO₃ + CaCl₂ → 2AgCl + Ca(NO₃)₂
<em>2 moles of AgNO₃ and 1 mole of CaCl₂ priduce 2 moles of AgCl and 1 mole of Ca(NO₃)₂</em>
<em />
100g of each reactant are:
AgNO₃: 100g × (1mol / 169.87g) = 0.589 moles
CaCl₂: 100g × (1mol / 110.98g) = 0.901 moles
For a complete reaction of 0.901 moles of CaCl₂ are necessaries 0.901×2 = <em>1.802 moles of AgNO₃. </em>As there are just 0.589moles, <em>AgNO₃ is limitng reactant</em>
<em></em>
0.589 moles of AgNO₃ produce:
0.589 moles × ( 2 moles AgCl / 2 moles AgNO₃) =
<em>0.589 moles of AgC</em>l. In mass:
0.589 moles of AgCl × (143.32g / mol) =<em> 84.4g of AgCl</em>
The free energy change(Gibbs free energy-ΔG)=-8.698 kJ/mol
<h3>Further explanation</h3>
Given
Ratio of the concentrations of the products to the concentrations of the reactants is 22.3
Temperature = 37 C = 310 K
ΔG°=-16.7 kJ/mol
Required
the free energy change
Solution
Ratio of the concentration : equilbrium constant = K = 22.3
We can use Gibbs free energy :
ΔG = ΔG°+ RT ln K
R=8.314 .10⁻³ kJ/mol K

The decrease in velocity is called deceleration or negative acceleration.
Hope i helped... If you need anything else ask me! :)
Answer:
whats the question so i can answer?