1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
3 years ago
6

Given sets X, Y, Z, and U, find the set Xn(X - Y) using the listing method.

Mathematics
1 answer:
Aliun [14]3 years ago
6 0

Answer:

{f, a}

Step-by-step explanation:

Given the sets:

X = {d, c, f, a}

Y = {d, e, c}

Z ={e, c, b, f, g}

U = {a, b, c, d, e, f, g}

To obtain the set X n (X - Y)

We first obtain :

(X - Y) :

The elements in X that are not in Y

(X - Y) = {f, a}

X n (X - Y) :

X = {d, c, f, a} intersection

(X - Y) = {f, a}

X n (X - Y) = elements in X and (X - Y)

X n (X - Y) = {f, a}

You might be interested in
Nine cyclists were each asked the distance in miles they biked last week.
Ivahew [28]

Answer:

Its A or the first option

Step-by-step explanation:

good luck

4 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
△DEF is shown below.<br><br>Triangle DEF<br><br>What is m∠DEF?​
S_A_V [24]

Answer:

m∠DEF = 50

Step-by-step explanation:

∠DEG = ∠GEF

3y + 4 = 5y - 10

subtract 4 from both sides

3y = 5y - 14

subtract 5y from both sides

-2y = -14

divide by -2

y = 7

Add 7 into the equations:

3y + 4 + 5y - 10

3(7) + 4 + 5(7) - 10

21 + 4 + 35 - 10

25 + 25

50

4 0
3 years ago
!!please answer quickly and correctly!!
Valentin [98]

Large=40 pounds

small=30 pounds

and this is the solution

3 0
3 years ago
This is the table i need help with
Papessa [141]
2.3 is the other length
Hope this helps :)
8 0
3 years ago
Read 2 more answers
Other questions:
  • one table sale has 75 cookies. Another table has 60 cupcakes. which table allows for more rectangular arrangements when all the
    6·1 answer
  • 11 minus the product of 5 and a number k
    9·1 answer
  • Three cars are for sale.
    8·1 answer
  • Find the nth term of each of the sequence: 1, 3, 9, 27, 81, ...​
    14·1 answer
  • Marvin is buying a watch from his brother for $160. his brother tells him that he can pay $40 down and the rest and 10 equals st
    9·1 answer
  • What multiplies to 330 and adds to 61
    9·1 answer
  • Can someone help me for question 9? Pls I need to know how I can solve this question!!
    13·1 answer
  • Which of these inequalities has no solutions?
    15·1 answer
  • Can someone help me out with my math homework my grades are ba
    14·1 answer
  • You roll one die 8 times. What is the probability of rolling exactly six fours
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!