Answer:
The observer sees the space-probe 9.055m long.
Explanation:
Let
be the length of the space-probe when measured at rest, and
be its length as observed by an observer moving at velocity
, then

Now, we know that
and
, and putting these into
we get:


Thus, an observer moving at 0.95c observes the space-probe to be 9.055m long.
The most probable reason why the magnets won't stick on the refrigerator is that the body of the refrigerator and the magnets have like poles. If both have negative or both have positive poles facing each other, they will repel. In principle, magnets are attracted to opposite poles and like poles repel.
Answer:
x=?
dt=?
vi=23m/s
vf=0m/s (it stops)
d=0.25m/s^2
time =
vf=vi+d: 0=23m/s+(0.25m/s^2)t
t=92s
displacement=
vf^2=vi^2+2a(dx)
23^2=0^2+2(0.25m/s^2)x =-1058m
Explanation:
you can find time from vf = vi + a(Dt): 0 = 23 m/s + (0.25 m/s/s)t so t = 92 s and you can find the displacement from vf2 = vi2 + 2a(Dx) and find the answer in one step: 232 = 02 + 2(0.25 m/s/s)x so x = -1058 m
-- "Free fall" means no forces acting on the object except for gravity.
-- An object dropped through air has two forces on it -- gravity and air resistance.
-- So we're looking for the part of the drop where air resistance is smallest.
-- The force of air resistance depends on the speed through the air, so the
force of air resistance is smallest when <em>velocity downward is smallest</em>.