Explanation:
Displacement is the straight line distance from the starting position to the final position.
Person X walks halfway around circle. So her displacement is 100 m.
Person Y walks 3/4 of the way around. So his displacement is 50√2 m ≈ 70.7 m.
Person Z walks completely around the circle, so their displacement is 0 m.
Therefore:
Z < Y < X
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
In the first case, the force acting on the spring is the weight of the mass:

This force causes a stretching of

on the spring, so we can use these data to find the spring constant:

In the second case, the first mass is replaced with a second mass, whose weight is

And since we know the spring constant, we can calculate the new elongation of the spring:
Answer:
Final temperature, 
Explanation:
Given that,
Mass of silver ring, m = 4 g
Initial temperature, 
Heat released, Q = -18 J (as heat is released)
Specific heat capacity of silver, 
To find,
Final temperature
Solution,
The expression for the specific heat is given by :





So, the final temperature of silver is 21.85 degrees Celsius.
Answer:
The Milky Way is about 1,000,000,000,000,000,000 km (about 100,000 light years or about 30 kpc) across. The Sun does not lie near the center of our Galaxy. It lies about 8 kpc from the center on what is known as the Orion Arm of the Milky Way