To determine the distance of the light that has traveled given the time it takes to travel that distance, we need a relation that would relate time with distance. In any case, it would be the speed of the motion or specifically the speed of light that is travelling which is given as 3x10^8 meters per second. So, we simply multiply the time to the speed. Before doing so, we need to remember that the units should be homogeneous. We do as follows:
distance = 3x10^8 m/s ( 8.3 min ) ( 60 s / 1 min ) = 1.494x10^11 m
Since we are asked for the distance to be in kilometers, we convert
distance = 1.494x10^11 m ( 1 km / 1000 m) = 149400000 km
Answer:
179.47m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute
7750(179)+72(230) = (7750+72)v
1,387,250+16560 = 7822v
1,403,810 = 7822v
v = 1,403,810/7822
v= 179.47m/s
Hence the final velocity of the probe is 179.47m/s
The thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
<h3>What is wage speed?</h3>
It should be noted that wave speed simply means the distance that a wave travels during a particular time.
It should be noted that higher tension leads to an increase in the speed of the wave.
Therefore, the thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
Learn more about speed on:
brainly.com/question/13943409
#SPJ4
Answer:
electrostatic attraction
Explanation:
Atoms form chemical bonds with other atoms when there's an electrostatic attraction between them. This attraction results from the properties and characteristics of the atoms' outermost electrons, which are known as valence electrons.
Answer:
1.843 x 10^-5 C
Explanation:
<u><em>Givens:
</em></u>
It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.
Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation
E = (Q/A)/∈o (1)
Where,
Q: total charge on the disk.
A: the area of the disk.
<u><em>Calculations: </em></u>
We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold
Q = EA∈o
= (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)
= 1.843 x 10^-5 C
note:
calculations maybe wrong but method is correct