Answer:
the vertical acceleration of the case is 1.46 m/s
Explanation:
Given;
mass of the clarinet case, m = 3.07 kg
upward force applied by the man, F = 25.60 N
Apply Newton's second law of motion;
the upward force on the clarinet case = its weight acting downwards + downward force due to its downward accelaration
F = mg + m(-a)
the acceleration is negative due to downward motion from the top of the piano.
F = mg - ma
ma = mg - F

Therefore, the vertical acceleration of the case is 1.46 m/s²
Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.
Wassily Kandinsky invented abstract geometry :) have a good week
Change minutes to hrs, divide by 60:
30 min = .50 hrs
45 min = .75 hrs
12 min = .20 hrs
----------------
total + 1.45 hrs, total travel time
:
let a = average speed for the trip
:
Write a dist equation, dist = speed * time
:
80(.5) + 100(.20) + 40(.75) = 1.45a
40 + 20 + 30 = 1.45a
90 = 1.45a
a =
a = 62.069 km/h, for the entire trip
and
90 km is the total distance
Magnets are attracted when each of the different sides, most commonly known as "North" and "South", are facing each other. They repel when North and North, or South and South are facing each other.