1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
6

Light propagate faster through medium “a” than medium “b”

Physics
1 answer:
dangina [55]3 years ago
3 0

1) Medium "b" has more optical density

2) Light must hit the interface between the two mediums perpendicularly

Explanation:

1)

Refraction occurs when light propagates from a medium into a second medium.

The optical density of a medium is given by its index of refraction, which is defined as:

n=\frac{c}{v}

where

c is the speed of light in a vacuum

v is the speed of light in a medium

Higher index of refraction means higher optical density, and light propagater slower into a medium with higher optical density.

In this problem, light propagates faster through medium "a" than medium "b": this means that medium "a" has lower refractive index of medium "b", and so "b" has more optical density.

2)

We can answer this part by referring to Snell's law, which gives the relationship between the direction of the incident ray and of the refracted ray when light passes through the interface between two media:

n_1 sin \theta_1 = n_2 sin \theta_2

where

n_1, n_2 are the index of refraction of the two mediums

\theta_1, \theta_2 are the angle of incidence and of refraction (the angle that light makes with the normal to the surface in medium 1 and medium 2)

Here we want the direction of propagation of the light ray not to change: this means that it must be

sin \theta_1 = sin \theta_2 (1)

However, here we have two mediums "a" and "b" with different index of refraction, so

n_1\neq n_2

Therefore the only angle that can satisfy eq.(1) is

\theta_1 = \theta_2 = 0

So, the light must hit the surface perpendicular to the interface between the two mediums.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

You might be interested in
A 2.0 x 10^3-kilogram car travels at a constant speed of 12 meters per second around a circular curve of radius 30. meters. What
Vikentia [17]

The magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²

<h3>Circular motion</h3>

From the question, we are to determine the magnitude of the centripetal acceleration.

Centripetal acceleration can be calculated by using the formula

a_{c} =\frac{v^{2} }{r}

Where a_{c} is the centripetal acceleration

v is the velocity

and r is the radius

From the given information

v = 12 \ m/s

and r = 30 \ m

Therefore,

a_{c} =\frac{12^{2} }{30}

a_{c} =\frac{144 }{30}

a_{c} = 4.8\ m/s^{2}

Hence, the magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²

Learn more on circular motion here: brainly.com/question/20905151

4 0
2 years ago
A stone is dropped from a certain height, distance covered by it in one second is:
Alinara [238K]

Answer:

d = 4.9 m

Explanation:

It is mentioned that a stone is dropped from a certain height. It is required to find the distance covered by it in one second.

The initial speed of the stone is equal to 0 as it was at rest. Let d is the distance covered by the stone.

Using second equation of motion :

d=ut+\dfrac{1}{2}at^2

Put u = 0 and a = g

d=\dfrac{1}{2}gt^2\\\\d=\dfrac{1}{2}\times 9.8\times 1^2\\\\d=4.9\ m

So, the distance covered by it in one second is 4.9 m.

5 0
3 years ago
An archer defending a castle is on a 15.5 m high wall. He shoots an arrow straight down at 22.8 m/s. How much time does it take
vazorg [7]

Answer: 1.907

Explanation:

I did the math

3 0
3 years ago
A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym
user100 [1]

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

5 0
2 years ago
7. An 8 kg ball is travelling to the east at 10 ms', collides with a 2 kg ball travelling to the
Ymorist [56]

Answer:

The final velocity of the ball is 7m/s

Explanation:

M1=8kg,  V1 =10m/s , M2=2kg , V2=-5m/s

initial momentum before collison

m1v1+m2v2

=8×10 +2×(-5)  =80-10  = 70kg m/s

final momentum after collison

=(m1+m2)×v

=(8+2)×v

=10v

According to the law of conversion of momentum

initial momentum =final momentum

70=10v

10v=70

v=70/10

v=7m/s

3 0
3 years ago
Other questions:
  • An elastic loaded balloon launcher fires balloons at an angle of [38.0o above horizontal] from the surface of the ground. if the
    10·1 answer
  • If one gram of matter could be completely converted into energy, the yield would be
    7·1 answer
  • Missy Diwater the former platform diver for the Ringling Brother's circus had a kinetic energy of 15000 j just to prior to hitti
    12·1 answer
  • Which government agency is responsible for protecting the nation’s transportation systems to ensure freedom of movement for pass
    10·2 answers
  • Please help me find the last one ASAP! Thanks :))) (You don't have to send the definition)
    15·1 answer
  • Which molecule has charges that are free to move around?
    15·1 answer
  • Which of the following plays a major role in creating surface currents?
    10·2 answers
  • If a 50 N force was applied to a really massive object as well as a tiny object, what can you say
    11·1 answer
  • Part D
    8·1 answer
  • Briefly explain why experiments having faulty design or inconsistent data are problems for scientists. List several reasons
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!