Answer:
metals, composite, ceramics and polymers.
Explanation:
The four categories of engineering materials used in manufacturing are metals, composite, ceramics and polymers.
i) Metals: Metals are solids made up of atoms held by matrix of electrons. They are good conductors of heat and electricity, ductile and strong.
ii) Composite: This is a combination of two or more materials. They have high strength to weight ratio, stiff, low conductivity. E.g are wood, concrete.
iii) Ceramics: They are inorganic, non-metallic crystalline compounds with high hardness and strength as well as poor conductors of electricity and heat.
iv) Polymers: They have low weight and are poor conductors of electricity and heat
Properties of Carpenter's hammer possess
Explanation:
1.The head of a carpenter's hammer should possess the impact resistance, so that the chips do not peel off the striking face while working.
2.The hammer head should also be very hard, so that it does not deform while driving or eradicate any nails in wood.
3.Carpenter's hammer is used to impact smaller areas of an object.It can drive nails in the wood,can crush the rock and shape the metal.It is not suitable for heavy work.
How hammer head is manufactured :
1.Hammer head is produced by metal forging process.
2.In this process metal is heated and this molten metal is placed in the cavities said to be dies.
3.One die is fixed and another die is movable.Ram forces the two dies under the forces which gives the metal desired shape.
4.The third process is repeated for several times.
Answer:
1. Low power hand tools/small
2. Light to medium industrial tools
3. Large industrial tools
There are definitely a lot more categories than three, but this is what I have.
Answer:
Employers must comply with OSHA's regulations to safeguard workers from caught-in or -between dangers, which include, but are not limited to, the following:
• Protect power tools and other equipment with moving parts with guards.
• Support, secure, or otherwise make safe any equipment that has pieces that workers could become entangled in.
· Take precautions to avoid workers being crushed by tipped-over heavy machinery.
• Take precautions to avoid pinning workers between equipment and a solid object.
• Provide workers with protection when trenching and excavating.
• Provide ways to prevent constructions, such as scaffolds, from collapsing.
Explanation:
(a) If a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
(b) For a kitten to be at 90th percentile, the minimum weight is 146.45 g.
<h3>
Weight distribution of the kitten</h3>
In a normal distribution curve;
- 2 standard deviation (2d) below the mean (M), (M - 2d) is at 2%
- 1 standard deviation (d) below the mean (M), (M - d) is at 16 %
- 1 standard deviation (d) above the mean (M), (M + d) is at 84%
- 2 standard deviation (2d) above the mean (M), (M + 2d) is at 98%
M - 2d = 125 g - 2(15g) = 95 g
M - d = 125 g - 15 g = 110 g
95 g is at 2% and 110 g is at 16%
(16% - 2%) = 14%
(110 - 95) = 15 g
14% / 15g = 0.93%/g
From 95 g to 99 g:
99 g - 95 g = 4 g
4g x 0.93%/g = 3.72%
99 g will be at:
(2% + 3.72%) = 5.72%
Thus, if a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
<h3>Weight of the kitten in the 90th percentile</h3>
M + d = 125 + 15 = 140 g (at 84%)
M + 2d = 125 + 2(15) = 155 g ( at 98%)
155 g - 140 g = 15 g
14% / 15g = 0.93%/g
84% + x(0.93%/g) = 90%
84 + 0.93x = 90
0.93x = 6
x = 6.45 g
weight of a kitten in 90th percentile = 140 g + 6.45 g = 146.45 g
Thus, for a kitten to be at 90th percentile, the approximate weight is 146.45 g
Learn more about standard deviation here: brainly.com/question/475676
#SPJ1