Answer:
134.8 mmHg is the vapor pressure for solution
Explanation:
We must apply the colligative property of lowering vapor pressure, which formula is: P° - P' = P° . Xm
P° → Vapor pressure of pure solvent
P' → Vapor pressure of solution
Xm → Mole fraction for solute
Let's determine the moles of solute and solvent
17.5 g . 1 mol/180 g = 0.0972 moles
82 g . 1mol / 32 g = 2.56 moles
Total moles → moles of solute + moles of solvent → 2.56 + 0.0972 = 2.6572 moles
Xm → moles of solute / total moles = 0.0972 / 2.6572 = 0.0365
We replace the data in the formula
140 mmHg - P' = 140 mmHg . 0.0365
P' = - (140 mmHg . 0.0365 - 140mmHg)
P' = 134.8 mmHg
The only one that I can do without google is 47. Sorry that I can't answer the others. The answer to 47 is this: you know that the western side of the hill has the steepest slope because the ovals showing altitude are way closer together. The closer the circles/ovals are, the steeper the slope is.
Sorry if this doesn't help much, but I answered what I could without cheating.
Foxeslair
Stardust atoms are heavier elements, the percentage of star mass in our body is much more impressive. Most hydrogen in our body floats around in the form of water .
Ethane is an alkane. Methane is also an alkane and is considered to be the simplest alkane. The difference is ethane has only 2 carbon. That carbon has 6 hydrogen attached to it. So what we do is we multiply the moles of ethane by the number of hydrogen (by dimension analysis) resulting to 82.68 moles H.