Answer:
4 mol of KOH would produce 116.6 g of Mg(OH)₂
Explanation:
According to the following balanced equation:
- MgCl₂+ 2 KOH -----> Mg(OH)₂ + 2 KCL
One can note that 2 mol of KOH react with MgCl₂ to produce 1 mol of Mg(OH)₂.
using cross multiplication
2 mol of KOH → 1 mol of Mg(OH)₂.
4 mol of KOH → ?? mol of Mg(OH)₂.
no of moles of Mg(OH)₂ = (1 mol* 4 mol) / 2 mol =2 mol
Now we can convert moles of Mg(OH)₂ to grams using the formula
mass of Mg(OH)₂= (no. of moles * molar mass) = (2 mol * 58.3g/mol) = 116.6 g
- So, 4 mol of KOH would produce 116.6 g of Mg(OH)₂.
Answer:
33% yield
Explanation:
6.26/18.81 =0.33280170122 = 33%
Answer:

Explanation:
Hello there!
In this case, since this acid-base neutralization is performed in a 1:2 mole ratio of acid to base as the former is a diprotic acid (two hydrogen ions in the molecule), we can write the following equation:

In such a way, we can solve for the molarity of the acid, given the molarity and concentration of the NaOH base and the volume of the acid:

Thus, we plug in the given data to obtain:

Best regards!
Answer:
Option D
Explanation:
A solution is neutral if it contains equal concentrations of hydronium and hydroxide ions; acidic if it contains a greater concentration of hydronium ions than hydroxide ions; and basic if it contains a lesser concentration of hydronium ions than hydroxide ions.
A common means of expressing quantities, the values of which may span many orders of magnitude, is to use a logarithmic scale.
The hydroxide ion molarity may be expressed as a p-function, or pOH.
pOH = −log[OH−]
Basic solutions are those with hydronium ion molarities less than 1.0 × 10−7 M and hydroxide ion molarities greater than 1.0 × 10−7 M (corresponding to pH values greater than 7.00 and pOH values less than 7.00).