Element atomic number position
Ba 56 group 2, period 6
Ca 12 group 2, period 3
S 16 group 16, period 3
Si `14 group 14, period 3
Now, you need to know the properties of the different type of elements and the tendencies on the periodic table.
The metallic elements are, those placed on the left side of the periodic table, are the ones that release an electron more easily, so they will requiere less energy to give it up when forming chemical bonds.
The higher the metallic character the less the energy need to give up an electron.
The metallic character grows as the group number decreases (goes to the left) period increases (goes downward), so among the elements considered, Barium will require the least amount of energy to give un an electron when forming chemical bonds.
Answer:
the original concentration of A = 0.0817092 M
Explanation:
A reaction is considered to be of first order it it strictly obeys the graphical equation method.

where;
k = the specific rate coefficient = 3.4 × 10⁻⁴ s⁻¹
t = time = 5.0 h = 5.0 × 3600 = 18000 seconds
a = initial concentration = ???
a - x = remaining concentration of initial concentration at time t = 0.00018 mol L⁻¹







a = 0.0817092 M
Thus , the original concentration of A = 0.0817092 M
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
<u>Answer:</u> The unbalanced chemical equation is written below.
<u>Explanation:</u>
Unbalanced chemical equation does not follow law of conservation of mass.
In an unbalanced chemical equation, total number of individual atoms on the reactant side will not be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of diboron trioxide and magnesium metal follows:

Hence, the unbalanced chemical equation is written above.