Answer:
Magnesium and calcium belong to the second group i. e. alkaline earth metals. They are known as earth metals because they are extracted from the earth. They are very reactive elements. Their reactivity increases when we go from top to bottom because the outermost electrons goes farther from the nucleus i. e. atomic radius increases so less energy is needed for its removal.
Answer:

Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ
) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ
) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is
.
Reversing III. gives us a negative enthalpy change as such:
(-Δ
) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of
, which is also the equation of interest.
Adding all three together:
(
)
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
Answer:
Dont use alot of points
Explanation:
people scam like me and ay the wrong answer and get the points :|
Answer:
400cal
Explanation:
Since ice melted at 0 Celesius then the heat gained by ice (latent heat) will melt it so you should substitute in that law
Q=mlf ..where Q is the heat required to convert ice to water , m is the mass of ice and lf is the latent heat of fusion
Q=5∗80=400cal
Answer:
Calibration curves are used to understand the instrumental response to an analyte, and to predict the concentration of analyte in a sample.