<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
I would pick the first option in the third option
Answer:
Molarity is moles per liter. You have one mole in 0.750 liters
Explanation:
Answer : 7.87 X

.
Explanation : To find the fraction of schottky defects in the given lattice of CsCl,
we use the formula,

on solving with the given values ,

and T as 645 + 273 K and rest are the constants.

we get the answer as 7.87 X

.
Answer:
HNO₃
Explanation:
Data given
Nitrogen = 9.8 g
Hydrogen = 0.70 g
Oxygen = 33.6 g
Empirical formula = ?
Solution:
Convert the masses to moles
For Nitrogen
Molar mass of N = 14 g/mol
no. of mole = mass in g / molar mass
Put value in above formula
no. of mole = 9.8 g/ 14 g/mol
no. of mole = 0.7
mole of N = 0.7 mol
For Hydrogen
Molar mass of H = 1 g/mol
no. of mole = mass in g / molar mass
Put value in above formula
no. of mole = 0.70 g/ 1 g/mol
no. of mole = 0.7
mole of H = 0.7 mol
For Oxygen
Molar mass of O = 16 g/mol
no. of mole = mass in g / molar mass
Put value in above formula
no. of mole = 33.6 g / 16 g/mol
no. of mole = 2.1
mole of O = 2.1 mol
Now we have values in moles as below
N = 0.7
H = 0.7
O = 2.1
Divide the all values on the smallest values to get whole number ratio
N = 0.7 / 0.7 = 1
H = 0.7 / 0.7 = 1
O = 2.1 / 0.7 = 3
So all have following values
N = 1
H = 1
O = 3
So the empirical formula will be HNO₃ i.e. all three atoms in simplest small ratio.