Answer:
102.0 g/mol.
Explanation:
Aluminum oxide or Al2O3 is a chemical compound composed of 3 Oxygen and 2 aluminum atoms. Naturally, it is present in the form of mineral corundum in crystalline polymorphic forms. It holds significant importance in the preparation of Aluminium metal that is used as a refractory material.
To calculate the molar mass of Aluminum oxide, we will add the molar mass of 2 Al and 3 O atoms.
Since molar mass of Al is: 26.98 g
Molar mass of O is: 16.00 g
Molar mass of Al2O3
= (26.98)2 + (16.00) 3
= 53.96 + 48
= 101.96 g/mol
Since it is mentioned in question to round off the answer upto 4 significant figures, it will make the answer: 102.0 g/mol.
Hope it help!
1.2 L of hydrogen can be produced at a pressure of 2 atm and a temperature of 298 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Step 1: Write the balanced equation
Mg + 2 HCl ⇒ MgCl₂ + H₂
Step 2: Calculate the moles corresponding to 2.3 g of Mg
The molar mass of Mg is 24.31 g/mol.
2.3 g × 1 mol ÷24.31 g = 0.095 mol
Step 3: Calculate the moles of H₂ produced
0.095 mol Mg × 1 mol H₂ ÷ 1 mol Mg = 0.095 mol H₂
Step 4: Calculate the volume occupied by the hydrogen
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T÷P
V = 0.095 mol × (0.0821 atm.L/mol.K) × 298 K÷2 atm
V = 1.2 L
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer:
Planetesimal
Explanation:
According to Nebular Theory, the Solar system was formed from the Solar Nebula about 4.6 billion years ago. Nebula is a molecular cloud composed of dust and gases. Majority of the mass accreted to form a core which gradually formed the Sun. The remaining mass of the disk surrounding the core accreted into small bodies known as Planetesimal which formed the planets.
Give the person above me brainless
I can help, pm me and i will help you on there if that's alright?