Momentum = (mass) x (velocity)
Original momentum before the hit =
(0.16 kg) x (38 m/s) this way <==
= 6.08 kg-m/s this way <==
Momentum after the hit =
(0.16) x (44 m/s) that way ==>
= 7.04 kg-m/s that way ==>
Change in momentum = (6.08 + 7.04) = 13.12 kg-m/s that way ==> .
-----------------------------------------------
Change in momentum = impulse.
Impulse = (force) x (time the force lasted)
13.12 kg-m/s = (force) x (0.002 sec)
(13.12 kg-m/s) / (0.002 sec) = Force
6,560 kg-m/s² = 6,560 Newtons = Force
( about 1,475 pounds ! ! ! )
It depends on the objects chemical composition.
The angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
<h3>
</h3><h3>What is angular speed ?</h3>
The rate of change of angular displacement is defined as angular speed. It is stated as follows:
ω = θ t
Where,
θ is the angle of rotation,
t is the time
ω is the angular velocity
The torque is found as;l

If the force is acting on the rod from the three point is the same, the value of the torque is depends upon the radius or the perpendicular distance.
The perpendicular distance of the right force is grater. Hence, the force acting on the right side is more, and the rod will rotate clockwise.
Both the forces are acting downwards. Thus, the resultant force is the less due to which the speed is increasing.
Hence, the angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
To learn more about the angular speed, refer to the link;
brainly.com/question/9684874
#SPJ1
Answer:
1985kg
Explanation:
assuming that
pi =3.14
oil density = 950kg/ cubic meter
g= 9.8m/s

Answer:
Maximum height, h = 1.74 meters
Explanation:
It is given that,
A potato is shot out of the cylinder. It is a case of projectile motion. The potato makes an angle of 17 degrees above the horizontal.
Initial speed with which the potato is shot out, u = 20 m/s
We have to find the maximum height of the potato. The maximum height of a projectile (h) is given by the following formula as :

Where
= angle between the projectile and the surface
g = acceleration due to gravity

h = 1.74 m
or h = 1.74 meters
Hence, this is the required solution.