1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nina [5.8K]
3 years ago
10

_____ developed the universal law of gravitation.

Physics
2 answers:
Sati [7]3 years ago
8 0

Answer: Newton

Explanation:

Anton [14]3 years ago
4 0

Sir Issac Newton developed the Universal law of Gravitation.

<u>Explanation :</u>

With the interesting quest for the answer why does the apply fall from a tree on the Earth, one of the wisest scientists Sir Issac Newton started investigating the action and thus developed the Universal law of Gravitation by estimating what caused the motionless apply to accelerate towards the Earth.  

According to his second law of motions, an objects which are at rest (apply attached to the twig of the tree) could get in motion (fall towards the Earth) only through an external force exerted on him by the Earth. He called this force has “Gravity” or the “Gravitational Force”.

You might be interested in
A projectile is launched at an angle of 29 degrees above the horizontal with an initial velocity of 36.6 at an unknown height.
alex41 [277]

The magnitude of the unknown height of the projectile is determined as 16.1 m.

<h3>Magnitude of the height</h3>

The magnitude of the height of the projectile is calculated as follows;

H = u²sin²θ/2g

H = (36.6² x (sin 29)²)/(2 x 9.8)

H = 16.1 m

Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.

Learn more about height here: brainly.com/question/1739912

#SPJ1

3 0
2 years ago
A screw having 50% efficiency is driven by a rod and 25 cm. The pitch of the screw is 1/10cm Calculate velocity ratio and mechan
neonofarm [45]

(a) The velocity ratio of the screw is 1570.8.

(b) The mechanical advantage of the screw is 785.39.

<h3>Velocity ratio of the screw</h3>

The velocity ratio of the screw is calculated as follows;

V.R = 2πr/P

where;

  • P is the pitch = 1/10 cm = 0.1 cm = 0.001 m
  • r is radius = 25 cm = 0.25 m

V.R = (2π x 0.25)/(0.001)

V.R = 1570.8

<h3>Mechanical advantage of the screw</h3>

E = MA/VR x 100%

0.5 = MA/1570.8

MA = 785.39

Learn more about mechanical advantage here: brainly.com/question/18345299

#SPJ1

4 0
2 years ago
You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m
Brut [27]

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

7 0
3 years ago
Read 2 more answers
A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of
Nastasia [14]

Answer:

Amplitude = 0.058m

Frequency = 6.25Hz

Explanation:

Given

Amplitude (A) = 8.26 x 10-2 m

Frequency (f) = 4.42Hz

Conversation of energy before split

½mv² = ½KA²

Make A the subject of formula

A = v\sqrt{\frac{m}{k} }

Conversation of energy after split

½(m/2)V'² = ½(m/2)V² = ½KA'²

½(m/2)V² = ½KA'²

Make A the subject of formula

First divide both sides by ½

(m/2)V² = KA'²

Divide both sides by K

\frac{m}{2K}V² = A'²

v\sqrt{\frac{m}{2k} } = A'

Substitute v\sqrt{\frac{m}{k} } for A in the above equation

A' = A/√2

A' = 8.26 x 10^-2/√2

A' = 0.05840702012600882

Amplitude after split = 0.058 (Approximated)

Frequency (f') = f√2

f' = 4.42√2

f' = 6.25082394568908011

Frequency after split = 6.25Hz (approximated)

8 0
3 years ago
A 2.74 g coin, which has zero potential energy at the surface, is dropped into a 12.2 m well. After the coin comes to a stop in
VikaD [51]

Answer:

B. - 0.328

Explanation

Potential Energy:<em> This is the energy of a body due to position.</em>

<em>The S.I unit of potential energy is Joules (J).</em>

<em>It can be expressed mathematically as</em>

<em>Ep = mgh........................... Equation 1</em>

<em>Where Ep = potential energy, m = mass of the coin, h = height, g = acceleration due to gravity,</em>

<em>Given: m = 2.74 g = 0.00274 kg, h = 12.2 m, g = 9.8 m/s²</em>

Substituting these values into equation 1

Ep = 0.00274×12.2×9.8

Ep = 0.328 J.

Note: Since the potential energy at the surface is zero, the potential Energy with respect to the surface = -0.328 J

The right option is B. - 0.328

<em />

7 0
3 years ago
Other questions:
  • Can someone please help me with this question thank you!
    5·1 answer
  • How does an electric field change due to voltage?
    8·1 answer
  • How does a merry go round use potential and kinetic energy
    7·1 answer
  • Suppose you ride your bicycle to the library traveling at 0.5 km/min. It takes you 25 minutes to get to 1.3
    6·1 answer
  • What does elastic collision mean?
    12·1 answer
  • Two speakers emit sound waves with frequency 4.55 kHz. They are driven by the same oscillator so that they are in phase with eac
    5·1 answer
  • Question 10 of 10
    14·2 answers
  • HELP ASAP WILL GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST!!!!
    13·1 answer
  • a garden hose of diameter 2cm is used to fill 1000 litre container in a time of 10 minutes.calculate the flow rate in cubic cm p
    6·1 answer
  • Greyhounds are among the fastest dogs on earth. On average, what is the fastest speed they can run?.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!