<span>Sure, Just change the 2 sec. into hrs. Since 1 hour = 3600 sec. then you can divide 2/3600 = 1/1800 hrs.
Distance in kilometers = (Speed in km/hr * time in hrs)
= 50*(1/1800)*1000 in meters
= 27.77 meters</span>
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)